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Abstract

In this article, the meshless local Petrov–Galerkin (MLPG) method is applied to compute two steady-state heat conduction problems
of irregular complex domain in 2D space. The essential boundary condition is enforced by the transformation method, and the MLS
method is used for interpolation schemes. A numerical example that has analytical solution shows the present method can obtain desired
accuracy and efficiency. Two cases in engineering with irregular boundary are computed to validate the approach by comparing the pres-
ent method with the finite volume method (FVM) solutions obtained from a commercial CFD package FLUENT 6.3. The results show
that the present method is in good agreement with FVM. It is expected that MLPG method (which is a truly meshless) is very promising
in solving engineering heat conduction problems within irregular domains.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The finite volume method (FVM) and finite element
method (FEM) have been widely applied to solve the prac-
tical engineering problems. It is well-known that these
methods depend strongly on the mesh properties. However,
to compute problems with irregular complex geometries by
using these methods, mesh generation is a far more time-
consuming and expensive task than solution of the partial
differential equations (PDEs), particularly in 3D cases.
Owing to the difficulty of FVM and FEM in the mesh gen-
eration, a new numerical method, meshless method (also
called meshfree method), has been developed fast in the
recent years. In the following a brief review is presented.
The smoothed particle hydrodynamics method that was
initially used for modelling astrophysical phenomena is
now widely used in such complicated phenomena as explo-
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sion and underwater shock problems [1]. The earlier
research works on SPH may be found in Lucy [2] and
Monaghan [3]. Diffuse approximation method (DAM) [4]
is closely related to the moving least-squares method,
which has been used in the framework of a Galerkin for-
mulation to develop the diffuse element method (DEM)
[5]. The element free Galerkin (EFG) method [6] is based
on the DEM and widely used in many mechanics problems.
The reproducing kernel particle method (RKPM) [7] is to
improve the SPH approximation to satisfy consistency
requirements using a corrections function, and it has been
used in nonlinear and large deformation problems of solid
mechanics. It should be noted that most of these methods
are not really meshless method, since they need to use a
background mesh for the numerical integration. The finite
point method (FPM) [8] and MLPG method [9,10] are both
truly meshless methods. The FPM uses a non-element
interpolation scheme-weighted least square and has no
integration required. But this method is based on the point
collocation, and the solution results are very sensitive to
the selection of the collocation points. The MLPG is based
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Nomenclature

a(x), a(x) coefficient of basis function and its vector
form

h heat transfer coefficient
n unit normal vector outward to the boundary
p(x), p(x) basis function and its vector form
q heat flux on the boundary
r size of support for the weight functions
T temperature
Th(xI) trial functionsbT I fictitious nodal values
wI(x) weight function
x,y spacial coordinates

Greek symbols

k thermal conductivity
/(x), U(x) shape function and its vector form

_U heat source
C1, C2, C2 boundaries
X problem domain

Subscripts and superscripts

a analytical
h approximate
I, J, K node indices
m number of terms
M total number of nodes
N number of nodes
num numerical
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on the weak form computed over a local sub-domain and
easy to deal with different boundary value problems.
Detailed introductions of the MLPG method can be found
in Atluri and Shen [11].

A number of meshless methods have been developed by
different authors to solve heat transfer and fluid flow prob-
lems [12–15]. The focus of the present study is concentrated
on the heat conduction problems. In the following a
brief review related to the present study is presented.
Cleary and Monaghan [16] and Chen et al. [17] employed
smoothed particle hydrodynamics method to solve
unsteady-state heat conduction problem. Singh and his col-
leagues used EFG method to solve a number of heat con-
duction problems, including the nonlinear heat conduction
[18], 2D fins [19], 3D steady-state [20] and transient [21]
heat conduction problems and composite heat transfer
problems [22],and their investigated results show that the
EFG results are more accurate than the FEM results [18].
Liu et al. [23] used meshless weighted least-squares
(MWLS) method to solve steady- and unsteady-state heat
conduction problems. Tan et al. [24] applied least-squares
collocation meshless method to solve coupled radiative
and heat conduction problems. Sadat et al. [25] used
DAM to solve a two-dimensional heterogeneous heat con-
duction problem. Qian et al. [26] applied MLPG method to
compute three-dimensional transient heat conduction
problem. Sladek et al. [27,28] applied MLPG method to
solve the heat conduction problem in an anisotropic
medium.

From above brief review on meshless method applica-
tion in solving heat conduction problems, we can see that
previous researchers have focused mainly on using EFG,
SPH and MLPG method. However, the EFG method
needs a background mesh for the integrals in the weak
form, hence it is not really meshless method; the SPH
and DAM and MLWS method are built on the collocation
point schemes, for which the selection of the collocation
point are important, and the numerical accuracy goes
down near the boundary. MLPG method is a truly mesh-
less method; it offers a lot of flexibility to deal with prob-
lems of different boundary conditions. A wide range of
problems have been investigated by Atluri and his coau-
thors using MLPG method. Almost all of the previous
works limited to heat conduction problems of regular
domain. However, many problems in engineering are in
irregular domain, and FVM and FEM are difficult to
describe accurately boundaries of the irregular domain
unless the mesh is very fine, or special grid generation
method is adopted which is usually time-consuming. Mesh-
less methods can overcome this difficulty because they do
not need mesh. Meshless methods distribute arbitrarily
scattering points in the problem domain, so they will have
more advantages in solving problems with irregular
domain than FVM and FEM. So in the present paper,
we apply MLPG method to compute two steady-state heat
conduction problems of irregular domain encountered in
engineering.

The following discussion begins with implementation of
local Petrov–Galerkin method for heat conduction prob-
lem in Section 2. The results of numerical examples and
discussion are presented in Section 3. The paper ends with
conclusions in Section 4.

2. Implementation of local Petrov–Galerkin method for heat

conduction problem

As other numerical simulation methods such as FVM,
the MLPG method needs some kind of interpolation
schemes and discretization methods to generate the alge-
braic equations, which can be solved numerically. There
are a number of local interpolation schemes, such as mov-
ing least-square (MLS) approximation, partition of unity
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method (PUM), Shepard function, reproducing kernel par-
ticle method (RKPM), etc. The MLS is selected in the pres-
ent paper.

2.1. The moving least-square approximation scheme

The MLS approximation is now widely used in meshless
methods for interpolation schemes. The MLS approxima-
tion consists of three components: a basis function, a
weight function associated with each node, and a set of
coefficients that depends on node position.

Consider a sub-domain XX, which is located within the
problem domain X (see Fig. 1) and has a number of ran-
domly located nodes xI (I = 1, . . . ,N). The moving least
squares approximate Th(x) of T(x) by following definition:

T hðxÞ ¼
Xm

i¼1

pðxÞaðxÞ ¼ pTðxÞaðxÞ ð1Þ

where pT(x) = [p1(x),p2(x), . . . ,pm(x)] is a complete mono-
mial basis, m is the number of terms in the basis, and
a(x) = [a1(x),a2(x), . . . ,am(x)] is the corresponding coeffi-
cient. For example, for a 2D problem, the basis can be cho-
sen as

Linear basis :pTðxÞ ¼ ½1; x; y�; m ¼ 3

Quadratic basis :pTðxÞ ¼ ½1; x; y; x2; xy; y2�; m ¼ 6 ð2Þ

The coefficient vector a(x) is determined by minimizing
the difference between the local approximation and the
function, and is defined as

JðaðxÞÞ ¼
XN

I¼1

wIðxÞ½T hðxIÞ � bT I �2

¼
XN

I¼1

wIðxÞ½pTðxIÞaðxÞ � bT I �2

¼ ½p � aðxÞ � bT� �W � ½p � aðxÞ � bT� ð3Þ

where xI denotes the position vector of node I; wI(x) is the
weight function associated with the node I; N is the number
of node in XX for which the weight functions wI(x) > 0 are
searched; and the matrices P and W are defined as
Fig. 1. Schematics of the MLS approximation.
P ¼

1 x1 y1 � � � pmðx1Þ

1 x2 y2 � � � pmðx2Þ

..

. ..
. ..

. ..
. ..

.

1 xN yN � � � pmðxN Þ

2666666664

3777777775
ð4Þ

W ¼

w1ðxÞ � � � 0

..

. . .
. ..

.

0 � � � wNðxÞ

266664
377775 ð5Þ

andbTT ¼ ½bT 1; bT 2; . . . ; bT N � ð6Þ

In Eq. (6) bT I is the fictitious nodal value. It is not the
nodal value of trial functions denoted by Th(x). Fig. 2 gives
a simple case for the distinction between bT I and Th(x).

To find the coefficient a(x), we obtain the extremum
by

oJðaðxÞÞ
oðaðxÞÞ ¼ 2

XN

I¼1

wIðxÞ
Xm

i¼1

piðxIÞaðxÞ � bT I

" #
piðxIÞ ¼ 0 ð7Þ

This leads to the following set of linear relations:

AðxÞaðxÞ ¼ BðxÞbT ð8Þ

where the matrices A(x) and B(x) are defined by

AðxÞ ¼ PTWP ¼ BðxÞP ¼
XN

I¼1

wIðxÞpðxIÞpTðxIÞ ð9Þ

BðxÞ ¼ pTw ¼ ½w1ðxÞpðx2Þ;w2ðxÞpðx2Þ; . . . ;wN ðxÞpðx3Þ�
ð10Þ

Solving a(x) from Eq. (8), and substituting it into Eq.
(1), we can obtain the final form of the MLS approxima-
tion as
( )hT x

( )h
IT xˆ IT

Ix
x

T

0

Fig. 2. The approximate function Th(x) and the nodal parameters TI in
the MLS approximation.
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T hðxÞ ¼ UTðxÞ � bT ¼XN

I¼1

/ðxÞbT I ; x 2 XX ð11Þ

where UT(x) = pT(x)A�1 (x)B(x) is the shape function, and
its partial derivatives are obtained from Eq. (11)

/I
;k ¼

Xm

j¼1

½pj;kðA�1BÞjI þ pjðA�1B;k þ A�1
;k BÞjI � ð12Þ

In Eq. (12) A�1
;k ¼ ðA

�1Þ;kðk ¼ ðx; y; zÞÞ, it represents the
derivative of the inverse of A, which is given by

A�1
;k ¼ �A�1A;kA�1 ð13Þ
2.2. The weight function

In practical applications, the weight function wI(x) is
generally nonzero over the small neighborhood of point
xI, and this neighborhood is called the domain of influence
of node I (see Fig. 1). Typically, the shape of the domain in
the two-dimensional space can be circular, ellipse, rectan-
gular or any other convenient regular closed lines and in
the three-dimensional space can be sphere, ellipsoid, cube
or any other simple cubic volume. In the present analysis
a circular domain has been selected. The choice of weight
function wI(x) affects the resulting approximation Th(x),
therefore, its selection is of essential importance. Numeri-
cal practices of [9,22] have shown that a quadratic spline
weight function works well. Hence in this article, the qua-
dratic spline weight function is used. Thus we have

wIðxÞ ¼
1� 6D2

I þ 8D3
I � 3D4

I ; 0 6 DI 6 1

0; DI > 1

(
ð14Þ

where DI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xIÞ2 þ ðy � yIÞ

2
q

=r, and r is the size of

support (see Fig. 1) for the weight functions. It can be seen
that the quadratic spline weight function is C1 continuous
over the entire domain.
2.3. Enforcement of essential (Dirichlet) boundary

conditions

In MLPG shape functions do not satisfy the Kronecker
delta property, and hence when such trial functions are
used, it is not easy to implement the essential boundary.
Various numerical techniques have been proposed to
enforce the essential boundary conditions, such as the
Lagrange multiplier method [29], the penalty approach
[30], the transformation method [11,31], the direct interpo-
lation method [32], etc. In the present work, the transfor-
mation method has been used to enforce essential
boundary condition, and the details for implementation
of the transformation method can be found in Atluri and
coworkers [11,31].
2.4. Numerical implementation for heat conduction problem

The steady-state heat conduction Poisson’ equation and
boundary conditions can be written as

k
d2T
dx2
þ k

d2T
dy2
¼ _U in X ð15Þ

The Dirichlet boundary condition:

T ¼ T 1 on C1 ð16Þ

The Neumann boundary condition:

�k
dT
dx
þ dT

dy

� �
nj ¼ q on C2 ð17Þ

The Robin boundary condition:

k
dT
dx
þ dT

dy

� �
nj ¼ hðT f � T Þ on C3 ð18Þ

where T represents temperature; k the thermal conductiv-
ity, nj the outward unit vector to C, q the given heat flux,
h the convection heat transfer coefficient, Tf is the environ-
mental temperature, _U the heat source per unit mass, and
C1, C2 and C3 the boundaries at which the Dirichlet, Neu-
mann and Robin conditions apply, respectively.

In the XX, the weighted integral form of Eq. (15) is given
asZ

Xx

k
d2T
dx2
þ d2T

dy2

� �
� _U

� �
wdXx ¼ 0 ð19Þ

To reduce this high-order differentiability requirement
on T, we can integrate Eq. (19) by parts. By using Gauss’
theorem, we can obtain the following local weak formula-
tion equation:Z

Xx

k
dT
dx

dw
dx
þ k

dT
dy

dw
dy
þ _Uw

� �
dXx

�
Z

C
k

dT
dx
þ dT

dy

� �
njwdC ¼ 0 ð20Þ

Substituting Eqs. (17) and (18) into Eq. (20), we can obtain
following equation:Z

Xx

k
dT
dx

dw
dx
þ k

dT
dy

dw
dy
þ _Uw

� �
dXx þ

Z
C2

qwdC2

�
Z

C3

hðT f � T ÞwdC3

�
Z

C1

k
dT
dx
þ dT

dy

� �
njwdC ¼ 0 ð21Þ

The MLS approximation function is given by

T ¼
XN

I¼1

UI � bT I ð22Þ

Substitution of Eq. (22) into Eq. (21) for all the nodes,
we can obtain the following linear equations:
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XM

J¼1

Z
Xx

k
dUJ bT J

dx
dwI

dx
þ k

dUJ bT J

dy
dwI

dy

 !
dXx

þ
XM

J¼1

Z
C3

hUJ bT J wI dC3

�
XM

J¼1

Z
C1

k
dUJ bT J

dx
þ dUJ bT J

dy

 !
njwI dC

¼ �
Z

Xx

_UwI dXx �
Z

C2

qwI dC2 þ
Z

C3

hT f wI dC3 ð23Þ

or

K � bT ¼ F ð24Þ

where M is the total number of nodes in the entire domain
X, bT the vector for the unknown fictitious nodal values,bT ¼ ½bT 1; bT 2; . . . ; bT M �, and K and F are the global stiffness
matrix and the global vector, respectively, which are de-
fined as

KIJ ¼
Z

Xx

k
dUJ

dx
dwI

dx
þ k

dUJ

dy
dwI

dy

� �
dXx

þ
Z

C3

hUJ wI dC3 �
Z

C1

k
dUJ

dx
þ dUJ

dy

� �
njwI dC ð25Þ

F I ¼ �
Z

Xx

_UwI dXx �
Z

C2

qwI dC2 þ
Z

C3

hT f wI dC3 ð26Þ
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(a) Analytical solution
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3. Results of numerical examples and discussion

In this section, MLPG method is applied to compute
two-dimensional steady-state heat conduction problems
in engineering within irregular domain. The meshless local
Petrov–Galerkin (MLPG) method is adopted by using lin-
ear basis and quadratic spline weight function, and the
transformation method is applied to deal with the essential
boundary conditions. A patch case that has analytical solu-
tion is solved to illustrate the accuracy and efficiency.
Results of two cases in engineering are compared with
Fig. 3. Problem description for patch test.

(b) MLPG method 
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Fig. 5. Comparison of temperature fields for patch test (�C).
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Fig. 6. Comparison of temperature distributions for patch test.
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2T

Fig. 7. Physical model and computational domain for insulation of tube
transporting vapor.
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the solutions from the finite volume method (FVM)
obtained by the commercial CFD package FLUENT 6.3.
3.1. Patch case

A rectangular domain in the dimension 2 m � 1 m is
shown in Fig. 3, the bottom and left boundaries are adia-
batic, and the upper and right boundaries are maintained
at the temperature Tw = 100 �C. There exits a uniformly
distributed heat source Q = 50 W/m2 in the domain, and
(a) MLPG method 

(b) FVM 

Line 2

Line 1

Fig. 8. Node or mesh distribution for insulation of tube transporting
vapor.
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the thermal conductivity is k = 1 W/(m �C). The analytical
solution of this problem is [33]:

T ðx; yÞ ¼ Q

kb3
m

X1
m¼1

ð�1Þm 2

a coshðbmbÞ coshðbmyÞ

� cosðbmxÞ þ Q
2k
ða2 � x2Þ þ T w ð27Þ

where bm ¼ ð2m�1Þp
2a ;m ¼ 1; 2; . . . ;N :
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Fig. 9. Comparison of temperature fields for insulation of tube trans-
porting vapor (�C).
The relative error of the numerical solution is defined
as

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðT num

i � T a
i Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðT a

i Þ
2

q ð28Þ

where the superscript num denotes numerical results of
MLPG method and FVM, a denotes analytical solutions,
and N is the total node number.

In the present computation, a uniform node distribution
of 41 � 21 is adopted, and partitions (6 � 6) are used for
the numerical integration; 10 Gauss points are used on
each section of C; and 6 � 6 points are used in each local
domain Xx for numerical quadratures. The relative error
is shown in Fig. 4, where the abscissa D is the node
distance. It can be seen that MLPG method is more
accurate than the finite volume method (FVM). Fig. 5 gives
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transporting vapor.
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conduction mud

vapor

Fig. 11. Physical model and computational domain for insulation of tube
transporting bitumen.

(a) MLPG method 
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predicted temperature fields and Fig. 6 gives predicted tem-
perature distributions along the two centerlines (x = 0.5
and y = 0.5). From Figs. 5 and 6, we can see that the results
from MLPG method and FVM agree very well with the
results of analytical solution. This shows that the MLPG
method is an efficient and accurate numerical method.
(b) FVM 

Fig. 12. Node or mesh distribution for insulation of tube transporting
bitumen.
3.2. Insulation of vapor transport tubes

The pipe of vapor transport with a diameter 200 mm is
covered by a thermal insulation layer, and which form a
square structure of 400 mm � 400 mm, as shown in
Fig. 7. Inner surface and outer surface temperature of heat
insulation layer is maintained at the temperature T1 =
200 �C and T2 = 60 �C, respectively. The thermal conduc-
tivity of heat insulation layer is k = 0.1 W/(m �C). Due
to symmetry, only the shadow region is selected as the
computational domain.

The selected node distribution of MLPG method and
mesh of FVM are shown in Fig. 8. It should be noted that
for the comparison purpose, the node distribution in the
MLPG is exactly the same as that of FVM. The computa-
tional methods are the same as the above case. Figs. 9 and
10 give the predicted temperature fields and temperature
distributions along line 1 and line 2 (see Fig. 8b) from
the present method and FVM, respectively. The maximum
relative error is less than 0.5% for the two curves. The
results of the present method are in very good agreement
with those obtained by using FVM.
3.3. Insulation of tubes for transport of bitumen

In the petrochemical engineering, in order to transport
high viscosity material such as petroleum, it often adopts
vapor heating system to keep the bitumen at certain tem-
perature, which can efficiently decrease the viscosity of
petroleum. The heating system which has steam traced pip-
ing or jacketed piping are often adopted. But the efficiency
of the stream traced piping is low, and the jacketed piping
is not easy to install. In recent years, a kind of new material
(conduction mud) which has higher thermal conductivity
has been employed. It is filled between a heating pipe and
a heated pipe (see Fig. 11), and can significantly enhance
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heat transfer between them [34]. In the present case the
thermal conductivity of the conduction mud is k = 10 W/
(m �C), the outer surfaces of two pipes are maintained at
the temperature 150 �C and 100 �C, respectively. Due to
symmetry, only the right half of shadow domain is numer-
ically modeled.

Node distribution of MLPG method and mesh of FVM
are shown in Fig. 12. It should be noted that for the com-
parison purpose, the node distribution in the MLPG is
exactly the same as that of FVM. The computational meth-
ods are the same as the above case. Figs. 13 and 14 give
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Fig. 13. Comparison of temperature fields for insulation of tube trans-
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Fig. 14. Comparison of temperature distributions for insulation of tube
transporting bitumen.
predicted temperature fields and temperature distributions
along line 1and line 2 (see Fig. 12b) of the present method
and FVM, respectively. The maximum relative error is less
than 0.3% for the two curve. Comparisons of the two
results show that they are quite close to each other.

4. Conclusions

In this paper, the meshless method is applied to compute
the two-dimensional steady-state heat conduction prob-
lems in irregular domain in engineering. The moving
least-squares approximation (MLS) is applied to construct
the trial functions and the transformation method is
employed to deal with the essential boundary condition.

The MLPG results have been compared with the results
of FVM using FLUENT 6.3, and the results of MLPG
method are in good agreement with those obtained by
FVM. From the computational results, it can be seen that
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the transformation method can be very effective and accu-
rate to deal with the essential boundary condition of irreg-
ular domain. The present study demonstrates that the
MLPG method is a high accurate numerical method for
problems within irregular domain. The implementation
procedure of MLPG method is node based, and it doesn’t
need background mesh for integration and is a truly mesh-
less method. Thus, it can be expected that MLPG method
is very promising in solving engineering heat conduction
problems within irregular domains.
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